

COMMON PRE-BOARD EXAMINATION 2022-23

Subject: CHEMISTRY (043) Answer Key

Class: XII

Date:

Time: 3 Hours

Max. Marks: 70

SECTION A

1.	a. 2-methylbutan-2-ol	1
2.	a. Racemisation	1
3.	b. They are chemically reactive	1
4.	b. 2 and 1 ½	1
5.	b. 3F	1
6.	b. $k = \frac{2.303}{t} log \frac{Pi}{2Pi - Pt}$	1
7.	d. dimethylamine	1
8.	d. hexadentate lingad	1
9.	a. o-nitrophenol	1
10.	b. C ₆ H ₅ - CH ₂ NC	1
11.	c. Cannizzaro reaction	1
12.	d. i) - C, (ii) - A, (iii) - D, (iv) - B.	1
13.	b. $[Pt (NH_3)_6]^{4+}$: octahedral :: $[Zn(NH_3)_4]^{2+}$: tetrahedral	1
14.	a. Acetic acid	1
15.	a. Both A and R are true and R is the correct explanation of A	1
16.	b. Both A and R are true and R is not the correct explanation of A	1
17.	c. A is true but R is false.	1
18.	a. Both A and R are true and R is the correct explanation of A	1
19.	(i) $k = \frac{2.303}{t} \log \frac{[A]_0}{[A]}$	2
	$=\frac{2.303}{300}\log\frac{1.6\times10^{-2}}{0.8\times10^{-2}}$	
	$=\frac{2.303}{300}\log 2=2.31\times 10^{-3}s^{-1}$	
	At 600 s, $k = \frac{2.303}{t} \log \frac{[A]_0}{[A]}$	
	$=\frac{2.303}{600}\log\frac{1.6\times10^{-2}}{0.4\times10^{-2}}$	
	$=2.31\times10^{-3}s^{-1}$	
	k is constant when using first order equation therefore it follows first order kinetics. OR	
	In equal time interval, half of the reactant gets converted into product and the rate of reaction is independent of concentration of reactant, so it is a first order reaction.	

	The reac	tions that have higher order true i	rate law but are found to behave as first order	
	are called	l psuedo first order reactions.		
	(ii) Half-	life period of reaction (t 1/2).		
	The half	life period of a reaction is the tim	ne needed for the reactant concentration to fall	
		lf of its initial value.		
25.	O R - C -	$CI + H_2 \xrightarrow{Pd/BaSO_4} R - C - H$ Aldehyde	2 2	2
	O CH ₃ — C Acetyl ch	$Cl + H_2 \xrightarrow{Pd/BaSO_4} R - C - H$ Aldehyde $-Cl + H_2 \xrightarrow{Pd/BaSO_4} CH_3 - C - H + HO$ Alderide Acetaldehyde	Cl (1m)	
	R—CH	$= COOH = \frac{(i) X_2 / \text{Red Phosphorus}}{(ii) H_2O}$	$R \longrightarrow C \longrightarrow $	
			Alpha halo carboxylic acid	
			(1)	
26.				3
		$ \begin{array}{c c} CH_3 & CH_3 & CH_3 \\ -C - OH \xrightarrow{573K} CH_3 - C \end{array} $	13	
		Cu Cu	CIT	
	CH ₃ -	$-C \longrightarrow OH \xrightarrow{573 \text{K}} CH_3 - C$	$=CH_2$	
		CH ₃		
	OCH ₃ Anisole	CH ₃ Cl Anhyd AlCl ₃ CS ₂ + CH ₃	CH ₃ CH ₃	
		4 – Methoxytoluene 2 – M (Major)	lethoxytoluene (Minor)	
	\wedge	OH	(Millor)	
		Zn dust		
	Phen			
	Then	Benzene		
27.	S.No.	Weak field coordination entity	Strong field coordination entity	3
	(1)	They are formed when the crystal field stabilisation energy (Δ_0) in octahedral complexes is less than the energy required for an electron pairing in a single orbital (P).	They are formed when the crystal field stabilisation energy (Δ_0) is greater than the P.	
	(ii)	They are also called high spin complexes.	They are called low spin complexes.	
	(iii)	They are mostly paramagnetic in nature.	They are mostly diamagnetic or less paramagnetic than weak field.	
		Navas faras ad bus ON a librar da	Farmed by ON a Place Parada	
	(iv)	Never formed by CN - ligands.	Formed by CN - like ligands.	

	The formula of the given compound Tris(ethane-1,2-diamine) chromium(III) chloride is [Cr(en)3]Cl3. (1m)	
	Hexaaquachromium(III)chloride (1m)	
28.	$wB = 250 \text{ g}, wA = 60 \text{ g}, M_A = 180 \text{g mol}-1$ $K_f = 1.86 \text{ K kg mol}^{-1}$	3
	$\Delta T_f = K_f m$ $= K_f \times \frac{W_A \times 1000}{M_A \times W_B}$	
	$= 1.86 \times \frac{60 \times 1000}{180 \times 250}$	
	$= \frac{1.86 \times 600}{18 \times 25} = \frac{1116}{450} = 2.48 \text{ K}$	
	$\Delta T_{\rm f} = T_{\rm solvent} - T_{\rm solution}$	
29.	$T_{\text{solution}} = T_{\text{solvent}} - \Delta T_{\text{f}} = 273.15 - 2.48 = 270.67 \text{ K}$ NH ₂ NH ₂	3
	+ 3Br ₂ Br + 3HBr	
	2,4,6-tribromophenylamine	
	Hydrochloric Anilinium Chloride NH ₃ * Cr Aniline Acid Chloride	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
30.	$CH_{3}-CH=CH_{2} \div HBr \xrightarrow{Peroxide} CH_{3}-CH_{2}-CH_{2}-Br$ $(Anti-Markovnikov's ddition) (scoarts reaction) AgF, Hg2F2 or SbF3 CH_{3}-CH_{2}-CH_{2}-F$	3
	$\begin{array}{c c} CI & CI \\ \hline \\ + CH_3CI & AlCI_3 \\ \hline \end{array} + CH_3 + CH_3$	

CH ₃ CH ₂ OH $\frac{SOC_2}{SO_2}$ Chloroethane -KCI KEN/ethanol CH ₄ CH ₂ CH $\frac{C}{SOC_2}$ Chloroethane -KCI KEN/ethanol CH ₃ CH ₂ CH ₂ CH ₂ CH + Nat The propagation of the control o			
1-Iodobutane 1-Bromopentane is most reactive twoards SN2 reactin because it is 1 ∘ alkylhalide. 4-bromo-4-methylpent-2-ene 31. i. Glucose ii. Glycogen iii. (a) Cellulose (b) Glycosidic linkage OR iii. (a) β-D-Galactose and β-D-Glucose (b) Starch 32. i. Liquid that have similar structures and polarizes form ideal solutions. ii. Benzene + Toluene iii. $\Delta H_{\text{mix}} \neq 0$, $\Delta V_{\text{mix}} \neq 0$ OR iii (a) The solution will show a negative deviation from Raoult's law. (b) Solution will show positive deviation. 33. At anode: $\Delta H_{\text{mix}} \neq 0$ and $\Delta H_{\text{mix}} \neq 0$ and $\Delta H_{\text{mix}} \neq 0$ are $\Delta H_{\text{mix}} \neq 0$. $\Delta H_{\text{mix}} \neq 0$ and $\Delta H_{\text{mix}} \neq 0$ are $\Delta H_{\text{mix}} \neq 0$ are $\Delta H_{\text{mix}} \neq 0$. $\Delta H_{\text{mix}} \neq 0$ and $\Delta H_{\text{mix}} \neq 0$ are $\Delta H_{\text{mix}} \neq 0$ and $\Delta H_{\text{mix}} \neq 0$ are $\Delta H_{\text{mix}} \neq 0$ and $\Delta H_{\text{mix}} \neq 0$ are $\Delta H_{\text{mix}} \neq 0$ and $\Delta H_{\text{mix}} \neq 0$ are $\Delta H_{\text{mix}} \neq 0$ and $\Delta H_{\text{mix}} \neq 0$ are $\Delta H_{\text{mix}} \neq 0$ and $\Delta H_{\text{mix}} \neq 0$ are $\Delta H_{\text{mix}} \neq 0$ and $\Delta H_{\text{mix}} \neq 0$ are $\Delta H_{\text{mix}} \neq 0$ and $\Delta H_{\text{mix}} \neq 0$ and $\Delta H_{\text{mix}} \neq 0$ are $\Delta H_{\text{mix}} \neq 0$ and $\Delta H_{\text{mix}} \neq 0$ and $\Delta H_{\text{mix}} \neq 0$ are $\Delta H_{\text{mix}} \neq 0$ and $\Delta H_{\text{mix}} \neq 0$ and $\Delta H_{\text{mix}} \neq 0$ are $\Delta H_{\text{mix}} \neq 0$ and		Ethanol -HCl Chloroethane -KCl KCN/ethanol CH ₃ CH ₂ CN Propanenitrile OR CH ₃ CH ₂ -CH ₂ -CH ₂ -Cl + NaI dry acetone (Finkelstein 1 - Chlorobutane reaction)	
1-Bromopentane is most reactive twoards SN2 reactin because it is 1 o alkylhalide. 4-bromo-4-methylpent-2-ene 31. i. Glucose ii. Glycogen iii. (a) Cellulose (b) Glycosidic linkage OR iii. (a) β-D-Galactose and β-D-Glucose (b) Starch 32. i. Liquid that have similar structures and polarizes form ideal solutions. ii. Benzene + Toluene iii. $\Delta H_{mix} \neq 0$, $\Delta V_{mix} \neq 0$ OR iii (a) The solution will show a negative deviation from Raoult's law. (b) Solution will show positive deviation. 33. At anode: $M_S \rightarrow M_S + 2$ Ag $M_S \rightarrow M_S \rightarrow M_S + 2$ Ag $M_S \rightarrow M_S \rightarrow M_$			
4-bromo-4-methylpent-2-ene 31. i. Glucose ii. Glycogen iii. (a) Cellulose (b) Glycosidic linkage OR iii. (a) β-D-Galactose and β-D-Glucose (b) Starch 32. i. Liquid that have similar structures and polarizes form ideal solutions. ii. Benzene + Toluene iii. $\Delta H_{\text{mix}} \neq 0$, $\Delta V_{\text{mix}} \neq 0$ OR iii (a) The solution will show a negative deviation from Raoult's law. (b) Solution will show positive deviation. 33. At anode: $Mg \rightarrow Mg2++2e$ At cathode: $2Ag + 2e \rightarrow 2Ag$ $Mg + 2Ag + 3mg2++2Ag = 2$ $E_{cell}^{0} = E_{cathode}^{0} - E_{node}^{0}$ $E_{cell}^{0} = E_{cathode}^{0} - E_{node}^{0}$ $E_{cell}^{0} = E_{ag+/Ag}^{0} - E_{mode}^{0}$ $E_{cell}^{0} = E_{cell}^{0} - \frac{0.059}{n} log \frac{[Mg^{2+}]^2}{[I0^{-4}]^2}$ $E_{cell} = 3.17 - \frac{0.059}{2} log \frac{[10^{-2}]}{[10^{-4}]^2} = 3.17 - 0.0295 log 10^6 = 3.17 - 0.177 V = 2.993$ Substituting $n = 2$, $F = 96500 \text{ C}$ mol ⁻¹ , $E_{cell} = 2.993 \text{ V}$ in the expression, $\Delta G = -nFE_{cell}$ we get $\Delta G = -2x96500 \text{ C}$ mol ⁻¹ $x = 2.993 \text{ V}$ $\Delta G = -577649 \text{ J}$ mol ⁻¹ $= -577.649 \text{ kJ}$ mol ⁻¹ $= -577.649 \text{ kJ}$ mol ⁻¹ OR (i) Advantages of fuel cell: (any two ½ mark each)		1 - Iodobutane	
31. i. Glucose ii. Glycogen iii. (a) Cellulose (b) Glycosidic linkage OR iii. (a) β-D-Galactose and β-D-Glucose (b) Starch 32. i. Liquid that have similar structures and polarizes form ideal solutions. ii. Benzene + Toluene iii. ΔH _{mix} ≠ 0, ΔV _{mix} ≠ 0 OR iii (a) The solution will show a negative deviation from Raoult's law. (b) Solution will show positive deviation. 33. At anode: Mg → Mg2+ + 2e At cathode: 2Ag+ + 2e → 2Ag Mg + 2 Ag+ → Mg2+ + 2Ag Mg + 2 Ag+ → Mg2+ + 2Ag Mg + 2 Ag+ → Mg2+ + 2Ag Ecell = Ecathode - EAnode Ecell = Eag+/Ag - Eng/(2+/Mg) = 0.080V - (-2.37V) = 3.17 V Nernst equation for cell reaction. Ecell = Bcell - 0.059/n log [Mg²+]/[Ag+]² Ecell = 3.17 - 0.059/n log [Mg²+]/[Ag+]² Ecell = 3.17 - 0.059/n log [10²+]/[10²+]² = 3.17 - 0.0295 log 10² = 3.17 - 0.177 V = 2.993 Substituting n = 2, F = 96500 C mol²-1, Ecell = 2.993 V in the expression, ΔG = -nFEcell we get ΔG = -2x96500 C mol²-1 x 2.993 V ΔG = -577649 J mol²-1 = -577.649 kJ mol²-1 OR (i) Advantages of fuel cell: (any two ½ mark each)			
ii. Glycogen iii. (a) Cellulose (b) Glycosidic linkage OR iii. (a) β-D-Galactose and β-D-Glucose (b) Starch 32. i. Liquid that have similar structures and polarizes form ideal solutions. ii. Benzene + Toluene iii. $\Delta H_{mix} \neq 0$, $\Delta V_{mix} \neq 0$ OR iii (a) The solution will show a negative deviation from Raoult's law. (b) Solution will show positive deviation. 33. At anode: $Mg \Rightarrow Mg2+2e$ At cathode: $2Ag+2e \Rightarrow 2Ag$ $Mg+2Ag+2e \Rightarrow 2Ag$ $Mg+2e \Rightarrow 2Ag$	31.	* 1	4
iii. (a) Cellulose (b) Glycosidic linkage OR iii. (a) β -D-Galactose and β -D-Glucose (b) Starch 32. i. Liquid that have similar structures and polarizes form ideal solutions. ii. Benzene + Toluene iii. $\Delta H_{mix} \neq 0$, $\Delta V_{mix} \neq 0$ OR iii (a) The solution will show a negative deviation from Raoult's law. (b) Solution will show positive deviation. 33. At anode: $Mg \Rightarrow Mg2++2e$ At cathode: $2Ag+ \Rightarrow Mg2++2Ag$ $Mg+2Ag+ \Rightarrow Mg2++2Ag$ $E_{cell} = E_{cathode}^0 = E_{Anode}^0 = E_{Anode$			
OR iii. (a) β -D-Galactose and β -D-Glucose (b) Starch 32. i. Liquid that have similar structures and polarizes form ideal solutions. ii. Benzene + Toluene iii. $\Delta H_{mix} \neq 0$, $\Delta V_{mix} \neq 0$ OR iii (a) The solution will show a negative deviation from Raoult's law. (b) Solution will show positive deviation. 33. At anode: $Mg \Rightarrow Mg2++2e$ At cathode: $2Ag+ \Rightarrow 2Ag$ $Mg+2Ag+ \Rightarrow Mg2++2Ag$ $1 = 2E_{cell}^0 = E_{cathode}^0 - E_{Anode}^0 = E_{cell}^0 = E_{Ag+Ag}^0 - E_{Mg2+/Mg}^0 = 0.080V - (-2.37V) = 3.17V$ Nernst equation for cell reaction. $E_{cell} = E_{cell}^0 - \frac{0.059}{n} \log \frac{[Mg^{2+}]}{[Ag^{+}]^2}$ $E_{cell} = 3.17 - \frac{0.059}{2} \log \frac{[10^{-2}]}{[10^{-4}]^2} = 3.17 - 0.0295 \log 10^6 = 3.17 - 0.177 \text{ V} = 2.993$ Substituting $n = 2$, $F = 96500 \text{ C}$ mol ⁻¹ , $E_{cell} = 2.993 \text{ V}$ in the expression, $E_{cell} = 2.993 \text{ V}$ in the expression, $E_{cell} = 2.993 \text{ V}$ in the expression of $E_{cell} = 2.993 \text{ V}$ in th			
iii. (a) β-D-Galactose and β-D-Glucose (b) Starch 32. i. Liquid that have similar structures and polarizes form ideal solutions. ii. Benzene + Toluene iii. $\Delta H_{mix} \neq 0$, $\Delta V_{mix} \neq 0$ OR iii (a) The solution will show a negative deviation from Raoult's law. (b) Solution will show positive deviation. 33. At anode: $Mg \Rightarrow Mg2++2e$ At cathode: $2Ag++2e \Rightarrow 2Ag$ $Mg+2Ag+\Rightarrow Mg2++2Ag$ $Mg+2Ag+\Rightarrow Mg2++2Ag$ $E_{cell} = E_{cathode}^0 - E_{Anode}^0 = E_{cell}^0 = E_{Ag+/Ag}^0 - E_{Mg2+/Mg}^0 = 0.080V - (-2.37V) = 3.17V$ Nernst equation for cell reaction. $E_{cell} = E_{cell}^0 - \frac{0.059}{n} \log \frac{[Mg^{2+1}]}{[In^{2+1}]^2}$ $E_{cell} = 3.17 - \frac{0.059}{2} \log \frac{[10^{-2}]}{[10^{-4}]^2} = 3.17 - 0.0295 \log 10^6 = 3.17 - 0.177 \text{ V} = 2.993$ Substituting $ext{n} = 2$, $ext{n} = 2$. Substituting $ext{n} = 2$		· · · · · · · · · · · · · · · · · · ·	
 (b) Starch i. Liquid that have similar structures and polarizes form ideal solutions. ii. Benzene + Toluene iii. ΔH_{mix} ≠ 0, ΔV _{mix} ≠ 0 OR iii (a) The solution will show a negative deviation from Raoult's law.			
32. i. Liquid that have similar structures and polarizes form ideal solutions. ii. Benzene + Toluene iii. $\Delta H_{\text{mix}} \neq 0$, $\Delta V_{\text{mix}} \neq 0$ OR iii (a) The solution will show a negative deviation from Raoult's law. (b) Solution will show positive deviation. 33. At anode: $Mg \rightarrow Mg2++2e$ At cathode: $2Ag+2e \rightarrow 2Ag$ $Mg+2Ag+3e \rightarrow Mg2++2Ag = 12$ $E_{cell}^0 = E_{cathode}^0 - E_{Anode}^0 = E_{cell}^0 = E_{Ag+Ag}^0 - E_{Mg2+Mg}^0 = 0.080V - (-2.37V) = 3.17V$ Nernst equation for cell reaction. $E_{cell} = E_{cell}^0 - \frac{0.059}{n} log \frac{[Mg^{2+}]}{[Ag^+]^2}$ $E_{cell} = 3.17 - \frac{0.059}{2} log \frac{[10^{-2}]}{[10^{-4}]^2} = 3.17 - 0.0295 log 10^6 = 3.17 - 0.177 V = 2.993$ Substituting $n = 2$, $F = 96500$ C mol^{-1} , $E_{cell} = 2.993$ V in the expression, $E_{cell}^0 = 2.577649$ J $E_{cell}^0 = 2.577.649$ kJ $E_{cell}^0 = 2.$			
ii. Benzene + Toluene iii. $\Delta H_{\text{mix}} \neq 0$, $\Delta V_{\text{mix}} \neq 0$ OR iii (a) The solution will show a negative deviation from Raoult's law. (b) Solution will show positive deviation. 33. At anode: $Mg \rightarrow Mg2++2e$ At cathode: $2Ag++2e \rightarrow 2Ag$ $Mg+2Ag+\rightarrow Mg2++2Ag$ $Mg+2Ag+\rightarrow Mg2++2Ag$ $Mg+2Ag+\rightarrow Mg2++2Ag$ $E_{cell}^0 = E_{cathode}^0 = E_{Anode}^0 = E_{cell}^0 = E_{Ag+Ag}^0 - E_{Mg2+/Mg}^0 = 0.080V - (-2.37V) = 3.17V$ Nernst equation for cell reaction. $E_{cell} = E_{cell}^0 - \frac{0.059}{n} \log \frac{[Mg^{2+}]}{[Ag^+]^2}$ $E_{cell} = 3.17 - \frac{0.059}{2} \log \frac{[10^{-2}]}{[10^{-4}]^2} = 3.17 - 0.0295 \log 10^6 = 3.17 - 0.177 \text{ V} = 2.993$ Substituting $n = 2$, $F = 96500 \text{ C}$ mol ⁻¹ , $E_{cell} = 2.993 \text{ V}$ in the expression, $E_{cell} = 2.993 \text{ V}$ in the expression, $E_{cell} = 2.993 \text{ V}$ and E_{ce	32		4
iii. $\Delta H_{mix} \neq 0$, $\Delta V_{mix} \neq 0$ OR iii (a) The solution will show a negative deviation from Raoult's law. (b) Solution will show positive deviation. 33. At anode: $Mg \Rightarrow Mg2++2e$ At cathode: $2Ag++2e \Rightarrow 2Ag$ $Mg+2Ag+ \Rightarrow Mg2++2Ag = n=2$ $E_{Cell}^0 = E_{Cathode}^0 - E_{Anode}^0$ $E_{Cell}^0 = E_{Ag+/Ag}^0 - E_{Mg2+/Mg}^0 = 0.080V - (-2.37V) = 3.17 V$ Nernst equation for cell reaction. $E_{cell} = E_{Cell}^0 - \frac{0.059}{n} log \frac{[Mg^{2+}]}{[Ag^+]^2}$ $E_{cell} = 3.17 - \frac{0.059}{2} log \frac{110^{-2}}{[10^{-4}]^2} = 3.17 - 0.0295 log 10^6 = 3.17 - 0.177 \text{ V} = 2.993 Substituting n = 2, F = 96500 \text{ C} mol-1, E_{cell} = 2.993 \text{ V} in the expression, E_{cell} = 2.993 \text{ C} mol-1 E_{cell} = 3.17 - \frac{0.059}{2} log \frac{1000}{10000000000000000000000000000000$	34.	<u>*</u>	-
OR iii (a) The solution will show a negative deviation from Raoult's law. (b) Solution will show positive deviation. 33. At anode: $Mg \rightarrow Mg2++2e$ At cathode: $2Ag++2e \rightarrow 2Ag$ $Mg+2Ag+\rightarrow Mg2++2Ag=n=2$ $E_{Cell}^0 = E_{Cathode}^0 - E_{Anode}^0$ $E_{Cell}^0 = E_{Ag+/Ag}^0 - E_{Mg2+/Mg}^0 = 0.080V - (-2.37V) = 3.17 V$ Nernst equation for cell reaction. $E_{cell} = E_{Cell}^0 - \frac{0.059}{n} \log \frac{[Mg^{2+}]}{[Ag^+]^2}$ $E_{cell} = 3.17 - \frac{0.059}{2} \log \frac{[10^{-2}]}{[10^{-4}]^2} = 3.17 - 0.0295 \log 10^6 = 3.17 - 0.177 V = 2.993$ Substituting $n = 2$, $F = 96500$ C mol^{-1} , $E_{cell} = 2.993$ V in the expression, $E_{cell}^0 = 2.995$ C $E_{cell}^0 = 2.995$ V in the expression of $E_{cell}^0 = 2.995$ C $E_{cell}^0 = 2.995$ V in the expression of $E_{cell}^0 = 2.995$ C $E_{cell}^0 = 2.995$ V in the expression of $E_{cell}^0 = 2.995$ V $E_{cell}^0 = 2.995$ C $E_{cell}^0 = 2.995$ V in the expression of $E_{cell}^0 = 2.995$ C $E_{cell}^0 = 2.995$ V in the expression of $E_{cell}^0 = 2.995$ V $E_{cell}^0 = 2.995$ V in the expression of $E_{cell}^0 = 2.995$ V $E_{cell}^0 = 2.995$ V in the expression of $E_{cell}^0 = 2.995$ V $E_{cell}^0 = 2.995$ V $E_{cell}^0 = 2.995$ V in the expression of $E_{cell}^0 = 2.995$ V $E_{cell}^0 = 2.995$ V in the expression of $E_{cell}^0 = 2.995$ V $E_{cell}^0 = 2.995$ V $E_{cell}^0 = 2.995$ V in the expression of $E_{cell}^0 = 2.995$ V $E_{cell}^0 = 2.995$ V in the expression of $E_{cell}^0 = 2.995$ V $E_{cell}^0 = 2.995$ V in the expression of $E_{cell}^0 = 2.995$ V $E_{cell}^0 = 2.995$ V in the expression of $E_{cell}^0 $			
iii (a) The solution will show a negative deviation from Raoult's law. (b) Solution will show positive deviation. 33. At anode: $Mg \rightarrow Mg2+ + 2e$ At cathode: $2Ag+ + 2e \rightarrow 2Ag$ $Mg + 2 Ag + Mg2+ + 2Ag$ $n = 2$ $E_{Cell}^0 = E_{Cathode}^0 - E_{Anode}^0$ $E_{Cell}^0 = E_{Ag+/Ag}^0 - E_{Mg2+/Mg}^0 = 0.080V - (-2.37V) = 3.17 V$ Nernst equation for cell reaction. $E_{Cell} = E_{Cell}^0 - \frac{0.059}{n} log \frac{[Mg^{2+}]}{[Ag^{+}]^2}$ $E_{Cell} = 3.17 - \frac{0.059}{2} log \frac{[10^{-2}]}{[10^{-4}]^2} = 3.17 - 0.0295 log 10^6 = 3.17 - 0.177 \text{ V} = 2.993 Substituting n = 2, F = 96500 \text{ C} mol-1, E_{Cell} = 2.993 \text{ V} in the expression, E_{Cell} = 2.993 \text{ C} in the expression of E_{Cell} = 2.993 \text{ C} in $			
(b) Solution will show positive deviation. 33. At anode: $Mg \rightarrow Mg2+ 2e$ At cathode: $2Ag+ 2e \rightarrow 2Ag$ $Mg + 2Ag+ \rightarrow Mg2+ 2Ag$ $1 = 2E_{cell}^0 = E_{Cathode}^0 - E_{Anode}^0 = E_{Cell}^0 = E_{Ag+Ag}^0 - E_{Mg2+Mg}^0 = 0.080V - (-2.37V) = 3.17 V$ Nernst equation for cell reaction. $E_{cell} = E_{cell}^0 - \frac{0.059}{n} \log \frac{[Mg^{2+}]}{[Ag^+]^2}$ $E_{cell} = 3.17 - \frac{0.059}{2} \log \frac{[10^{-2}]}{[10^{-4}]^2} = 3.17 - 0.0295 \log 10^6 = 3.17 - 0.177 V = 2.993$ Substituting $1 = 2$, $1 = 2.993 = $		-	
33. At anode: $Mg \rightarrow Mg2++2e$ At cathode: $2Ag++2e \rightarrow 2Ag$ $Mg+2Ag+\rightarrow Mg2++2Ag$ $n=2$ $E^0_{Cell}=E^0_{Cathode}-E^0_{Anode}$ $E^0_{Cell}=E^0_{Ag+/Ag}-E^0_{Mg2+/Mg}=0.080V-(-2.37V)=3.17V$ Nernst equation for cell reaction. $E_{cell}=E^0_{Cell}-\frac{0.059}{n}\log\frac{[Mg^{2+}]}{[Ag^+]^2}$ $E_{cell}=3.17-\frac{0.059}{2}\log\frac{[10^{-2}]}{[10^{-4}]^2}=3.17-0.0295\log 10^6=3.17-0.177 V=2.993$ Substituting $n=2$, $F=96500$ C mol^{-1} , $E_{cell}=2.993$ V in the expression, $\Delta G=-nFE_{cell}$ we get $\Delta G=-2x96500$ C mol^{-1} x 2.993 V $\Delta G=-577649$ J $mol^{-1}=-577.649$ kJ $mol^{-1}=-577.649$ kJ mol^{-1} $=-577.649$ kJ mol^{-1}			
At cathode: $2Ag + 2e \rightarrow 2Ag$ $Mg + 2 Ag + Mg2 + 2Ag = n = 2$ $E_{cell}^0 = E_{Cathode}^0 - E_{Anode}^0$ $E_{Cell}^0 = E_{Ag+/Ag}^0 - E_{Mg2+/Mg}^0 = 0.080V - (-2.37V) = 3.17 V$ Nernst equation for cell reaction. $E_{cell} = E_{cell}^0 - \frac{0.059}{n} \log \frac{[Mg^{2+}]}{[Ag^+]^2}$ $E_{cell} = 3.17 - \frac{0.059}{2} \log \frac{[10^{-2}]}{[10^{-4}]^2} = 3.17 - 0.0295 \log 10^6 = 3.17 - 0.177 V = 2.993$ Substituting $n = 2$, $F = 96500$ C mol^{-1} , $E_{cell} = 2.993$ V in the expression, $\Delta G = -nFE_{cell}$ we get $\Delta G = -2x96500$ C mol^{-1} x 2.993 V $\Delta G = -577649$ J mol^{-1} $= -577.649$ kJ mol^{-1} $= -577.649$ kJ mol^{-1} OR	22		5
Mg + 2 Ag + → Mg2+ + 2Ag	33.		3
$E_{Cell}^{0} = E_{Cathode}^{0} - E_{Anode}^{0}$ $E_{Cell}^{0} = E_{Ag+/Ag}^{0} - E_{Mg2+/Mg}^{0} = 0.080V - (-2.37V) = 3.17 V$ Nernst equation for cell reaction. $E_{cell} = E_{Cell}^{0} - \frac{0.059}{n} \log \frac{[Mg^{2+}]}{[Ag^{+}]^{2}}$ $E_{cell} = 3.17 - \frac{0.059}{2} \log \frac{[10^{-2}]}{[10^{-4}]^{2}} = 3.17 - 0.0295 \log 10^{6} = 3.17 - 0.177 \text{ V} = 2.993$ Substituting $n = 2$, $F = 96500 \text{ C} \text{ mol}^{-1}$, $E_{cell} = 2.993 \text{ V}$ in the expression, $\Delta G = -nFE_{cell}$ we get $\Delta G = -2x96500 \text{ C} \text{ mol}^{-1} \times 2.993 \text{ V}$ $\Delta G = -577649 \text{ J} \text{ mol}^{-1}$ $= -577.649 \text{ kJ mol}^{-1}$ OR (i) Advantages of fuel cell: (any two ½ mark each)			
$E_{Cell}^{0} = E_{Ag+/Ag}^{0} - E_{Mg2+/Mg}^{0} = 0.080V - (-2.37V) = 3.17V$ Nernst equation for cell reaction. $E_{cell} = E_{Cell}^{0} - \frac{0.059}{n} \log \frac{[Mg^{2+}]}{[Ag^{+}]^{2}}$ $E_{cell} = 3.17 - \frac{0.059}{2} \log \frac{[10^{-2}]}{[10^{-4}]^{2}} = 3.17 - 0.0295 \log 10^{6} = 3.17 - 0.177 \text{ V} = 2.993$ Substituting $n = 2$, $F = 96500 \text{ C} \text{ mol}^{-1}$, $E_{cell} = 2.993 \text{ V}$ in the expression, $\Delta G = -nFE_{cell}$ we get $\Delta G = -2x96500 \text{ C} \text{ mol}^{-1} \text{ x } 2.993 \text{ V}$ $\Delta G = -577649 \text{ J} \text{ mol}^{-1}$ $= -577.649 \text{ kJ mol}^{-1}$ OR (i) Advantages of fuel cell: (any two ½ mark each)			
Nernst equation for cell reaction. $E_{cell} = E_{cell}^0 - \frac{0.059}{n} \log \frac{[Mg^{2+}]}{[Ag^+]^2}$ $E_{cell} = 3.17 - \frac{0.059}{2} \log \frac{[10^{-2}]}{[10^{-4}]^2} = 3.17 - 0.0295 \log 10^6 = 3.17 - 0.177 \text{ V} = 2.993$ Substituting $n = 2$, $F = 96500 \text{ C} \text{ mol}^{-1}$, $E_{cell} = 2.993 \text{ V}$ in the expression, $\Delta G = -nFE_{cell}$ we get $\Delta G = -2x96500 \text{ C} \text{ mol}^{-1} \text{ x } 2.993 \text{ V}$ $\Delta G = -577649 \text{ J} \text{ mol}^{-1}$ $= -577.649 \text{ kJ mol}^{-1}$ OR (i) Advantages of fuel cell: (any two ½ mark each)		$E_{Cell}^{o} = E_{Cathode}^{o} - E_{Anode}^{o}$	
$E_{cell} = E_{cell}^{0} - \frac{0.059}{n} log \frac{[Mg^{2+}]}{[Ag^{+}]^{2}}$ $E_{cell} = 3.17 - \frac{0.059}{2} log \frac{[10^{-2}]}{[10^{-4}]^{2}} = 3.17 - 0.0295 log 10^{6} = 3.17 - 0.177 \text{ V} = 2.993$ Substituting n = 2, F = 96500 C mol ⁻¹ , $E_{cell} = 2.993$ V in the expression, $\Delta G = -nFE_{cell}$ we get $\Delta G = -2x96500$ C mol ⁻¹ x 2.993 V $\Delta G = -577649 \text{ J mol}^{-1}$ $= -577.649 \text{ kJ mol}^{-1}$ OR (i) Advantages of fuel cell: (any two ½ mark each)			
$E_{cell} = 3.17 - \frac{0.059}{2} log \frac{[10^{-2}]}{[10^{-4}]^2} = 3.17 - 0.0295 log 10^6 = 3.17 - 0.177 \text{ V} = 2.993$ Substituting n = 2, F = 96500 C mol ⁻¹ , $E_{cell} = 2.993$ V in the expression, $\Delta G = -\text{nFE}_{cell}$ we get $\Delta G = -2\text{x}96500$ C mol ⁻¹ x 2.993 V $\Delta G = -577649 \text{ J mol}^{-1}$ = -577.649 kJ mol ⁻¹ OR (i) Advantages of fuel cell: (any two ½ mark each)		Nernst equation for cell reaction.	
$E_{cell} = 3.17 - \frac{0.059}{2} log \frac{[10^{-2}]}{[10^{-4}]^2} = 3.17 - 0.0295 log 10^6 = 3.17 - 0.177 \text{ V} = 2.993$ Substituting n = 2, F = 96500 C mol ⁻¹ , $E_{cell} = 2.993$ V in the expression, $\Delta G = -\text{nFE}_{cell}$ we get $\Delta G = -2\text{x}96500$ C mol ⁻¹ x 2.993 V $\Delta G = -577649 \text{ J mol}^{-1}$ = -577.649 kJ mol ⁻¹ OR (i) Advantages of fuel cell: (any two ½ mark each)		$\begin{bmatrix} & & & 0.059 \end{bmatrix}_{loc} [Mg^{2+}]$	
Substituting n = 2, F = 96500 C mol ⁻¹ , E_{cell} = 2.993 V in the expression, ΔG = -nFE _{cell} we get ΔG = -2x96500 C mol ⁻¹ x 2.993 V ΔG = - 577649 J mol ⁻¹ = - 577.649 kJ mol ⁻¹ OR (i) Advantages of fuel cell: (any two ½ mark each)		$\int_{Cell} = E_{Cell} - \frac{1}{n} \log \frac{1}{[Ag^+]^2}$	
Substituting n = 2, F = 96500 C mol ⁻¹ , E_{cell} = 2.993 V in the expression, ΔG = -nFE _{cell} we get ΔG = -2x96500 C mol ⁻¹ x 2.993 V ΔG = - 577649 J mol ⁻¹ = - 577.649 kJ mol ⁻¹ OR (i) Advantages of fuel cell: (any two ½ mark each)			
get $\Delta G = -2x96500 \text{ C mol}^{-1} \text{ x } 2.993 \text{ V}$ $\Delta G = -577649 \text{ J mol}^{-1}$ $= -577.649 \text{ kJ mol}^{-1}$ OR (i) Advantages of fuel cell: (any two ½ mark each)		$\frac{ \mathcal{L}_{cell} - 3.17 - \frac{109}{2} \log \frac{10^{-4}}{[10^{-4}]^2} = 3.17 - 0.0293 \log 10^{\circ} = 3.17 - 0.177 \text{ V} = 2.993$	
get $\Delta G = -2x96500 \text{ C mol}^{-1} \text{ x } 2.993 \text{ V}$ $\Delta G = -577649 \text{ J mol}^{-1}$ $= -577.649 \text{ kJ mol}^{-1}$ OR (i) Advantages of fuel cell: (any two ½ mark each)		Substituting $n = 2$ $F = 96500$ C mol ⁻¹ $F_{col} = 2.993$ V in the expression $\Delta G = -nFF_{col}$ we	
$\Delta G = -2x96500 \text{ C mol}^{-1} \text{ x } 2.993 \text{ V}$ $\Delta G = -577649 \text{ J mol}^{-1}$ $= -577.649 \text{ kJ mol}^{-1}$ OR (i) Advantages of fuel cell: (any two ½ mark each)			
$\Delta G = -577649 \text{ J mol}^{-1}$ $= -577.649 \text{ kJ mol}^{-1}$ \mathbf{OR} (i) Advantages of fuel cell: (any two ½ mark each)			
= - 577.649 kJ mol ⁻¹ OR (i) Advantages of fuel cell: (any two ½ mark each)			
OR (i) Advantages of fuel cell: (any two ½ mark each)			
(i) Advantages of fuel cell: (any two ½ mark each)			
(a) It is a pollution free device since no narmari products are formed.			
		(a) It is a polition free device since no narmar products are formed.	1

- (b) Its efficiency is about 75% which is considerably higher than conventional cells.
- (c) It is a continuous source of energy if the supply of gases is maintained

(ii)Lead storage battery is an example for secondary cells. It is rechargeable and can be used again and again. It is recharged by passing current through it from an external source. (1m)

Pagetian at anode: Ph(s) + SO(2s) + S

Reaction at anode: $Pb(s) + SO42- (aq) \rightarrow PbSO4 (s) + 2e (\frac{1}{2} m)$

Reaction at cathode: PbO2 (s) + SO42- + 4H+ + 2e \rightarrow PbSO4(s) + 2H2O (l) ($\frac{1}{2}$ m)

The overall reaction is

 $Pb(s) + PbO2(s) + 2H_2SO_4 \rightarrow 2PbSO_4(s) + 2H_2O$ (1m)

(iii) Λ_m^o (CH_3COOH) = Λ^0 m (CH_3COONa) + Λ^0 m (HCl) - Λ^0 m (NaCl) = 91 + 426 - 126 = 391 Scm² mol⁻¹ (1m)

34. Hence compound A is CH₃—CH=C—CH₃

(i) CH_3 — $CH=C-CH_3$ $\xrightarrow{\text{(i) O}_3}$ CH_3 — $CHO+O=C-CH_3$

CH₃

2-Methylbut-2-ene (A) Acetaldehyde (Acetone) (Ethanal) (C) 5

(ii) CH₃CHO + 3NaOI — Cl₃CHO + 3NaOH

(B) Sodium Tri-iode
hypoiodite acetaldehyde

- (b) b. (i) Tollen's reagent test: Add ammoniacal solution of silver nitrate (Tollen's Reagent) in both the solutions. Butanal gives silver mirror whereas Butan-2-one does not. (1)
- (ii) Add neutral FeCl3 in both the solutions, phenol forms violet colour but benzoic acid does not. (1)

OR

Etard reaction

Stephen reaction

35. A) (i) Cr, the highest melting point of Cr is attributed to the involvement of greater number of electrons(5) from 3d in addition to 4s electrons in interatomic metallic bonding.

(ii)Mn, because the change from Mn^{3+} (d^4) to Mn^{2+} (d^5) results in the half filled configuration which has extra stability.

(iii)Zn, in Zn $(3d^{10}4s^2)$ all the electrons present in d-orbitals are paired and hence metallic bonds present in it are weak. That is why , it is soft.

B) Sodium chromate is acidified with sulphuric acid to give a solution from which orange sodium dichromate, Na₂Cr₂O₇.2H₂O can be crystallised.

$$2Na_2CrO_4 + 2H^+ \rightarrow Na_2Cr_2O_7 + 2Na_+ + H_2O$$

Sodium dichromateis more soluble than potassium dichromate. The letter is therefore, prepared by treating the solution of sodium dichromate with potassium chloride.

$$Na_2Cr_2O_7 + 2KCI \rightarrow K_2Cr_2O_7 + 2NaCI$$
